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1 Main assumptions and conventions

K � 1 (1)

Nu � 1 (2)

n� 1 (3)

where K is the undulator’s strength parameter, Nu is the number of undulator periods, n is the mean number of
photons detected per one pass.

Throughout the paper, equations are written in Gaussian units. However, I also omit c everywhere, as if c = 1.
It can always be restored if needed.

2 Some classical results for undulator radiation

In general, radiation field produced by any classical current far from the source can be found (see [1]) by the following
equation

Etot(r, ω) = iω
eiωr

r

∑
s=1,2

e(s) ⊗ e(s)
∫
d3r′e−ik·r

′
jtot(r

′, ω), (4)

where k = ωr/r, r is the position of observation point with respect to some reference point in the source of radiation,
e(s) are polarization vectors, ⊗ denotes tensor product. In our case, the source current is formed by a bunch of
electrons. Hence, it is convenient to represent the total field as a sum of contributions from different electrons:

Etot(r, ω) =
∑
j

Ej(r, ω). (5)

with j = 1..Ne, where Ne is the number of electrons in the bunch. An equation for each Ej(r, ω) can easily be found
by using the following representation of current produced by jth electron:

j(j)(r, t) = eβ(j)(t)δ(3)
(
r − r(j)(t)

)
. (6)

The oscillating part of electron’s x-component (perpendicular to magnetic field) is

x(j)(z(j)) =
K

γku
sin
(
kuz

(j)
)

(7)

From now on, let us focus solely on x-polarization (subscript x will be omitted). Using Eqs. (6) and (7) in Eq. (4)
results in

Ej(r, ω) =
e

4π

eiωr

r

KωLu
γ

(1− θ2xω

ku
) sinc

[
πNu

(
ω

ω0
(1 + γ2θ2)− 1

)]
eiωtj−iωθxxj−iωθyyj ≡

√
~ωeiωr

r
E(n, ω)e−iωn·rj , (8)

where ω0 = 2γ2ku, tj is the moment of time when jth electron enters the undulator, xj and yj are its transverse
coordinates at that moment, rj ≡ (xj , yj ,−tj), n = (θx, θy, 1).
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3 Calculation of variance of number of detected photons in quantum
optics

3.1 Distribution of number of detected photons at a given and fixed {rj}
In this subsection we consider one pass of a bunch of electrons (with fixed {rj}) through an undulator. The goal
is to find the distribution of number of detected photons in this case. In quantum optics, we cannot speak about
individual electrons emitting photons, instead there is a certain quantum state of electromagnetic field produced by
all the electrons together, and we calculate correlation functions (see [2–4]) of 1st, 2nd,.. orders to find probabilities
to detect 1,2,.. photons, respectively. For example, correlation function of the first order is given by

G(1) (r, t) = Tr
[
ρ̂Ê(−) (r, t) Ê(+) (r, t)

]
, (9)

and the probability to detect one photon can be calculated in the following way

P (1) ∼
∞∫
−∞

dt

∫
detector

d2rG(1) (r, t) . (10)

Glauber has shown (see [3]) that for any classical current the photon statistics is Poissonian:

P (n) = e−W
Wn

n!
, (11)

where the expected value W coincides (for ideal detector) with classical value of mean number of emitted photons
nc:

W = nc =

∞∫
0

dω

∫
detector

d2r
1

~ω
|Etot(r, ω)|2. (12)

However, Glauber’s result (11) makes sense only when W � 1. In our case, for a bunch of electrons, if we
integrate over entire detector, then nc � 1. But we can overcome this obstacle by dividing the entire detector into
Ndet � 1 small detectors with equal expected values w, such that w in each of them is much smaller than one. Then,
the distribution of number of emitted photons in each of the small detectors will still be Poissonian:

p(n) = e−w
wn

n!
, (13)

with

w =

∞∫
0

dω

∫
small detector i

d2r
1

~ω
|Etot(r, ω)|2. (14)

According to central limit theorem, the number of photons detected in the entire detector will have a normal
distribution with expected value (µ) and variance (σ2) Ndet times larger than in the small detectors:

µ = Ndetw, σ2 = Ndetw, (15)

or

µ = σ2 = Ndetw =
∑
i

∞∫
0

dω

∫
small detector i

d2r
1

~ω
|Etot(r, ω)|2 =

∞∫
0

dω

∫
detector

d2r
1

~ω
|Etot(r, ω)|2 = nc. (16)

Thus, the distribution of number of detected photons takes the following form

P (n) =
1√

2πnc
e−

1
2nc

(n−nc)2 , (17)

with

nc =

∞∫
0

dω

∫
detector

d2r
1

~ω
|Etot(r, ω)|2, (18)

One can use Eqs. (5) and (8) in Eq. (18) to obtain

nc =

∞∫
0

dω

∫
detector

dθxdθy|E(n, ω)|2
Ne +

∑
i 6=j

eiωn(ri−rj)

 . (19)

2



3.2 Taking into account randomness of each rj

In this subsection, we will take into account the fact that each rj is a random variables, because each turn {rj}
change due to synchrotron motion and photon emissions in the rest of the ring. Therefore, now it is important to
indicate that nc is a function of {rj}, i.e. nc = nc ({rj}), the exact dependence is given in Eq. (19). We will assume
that tj ,xj ,yj have independent Gaussian distributions, i.e.

ρ (rj) =
1√

2πσz
e
− 1

2σ2z
t2j 1√

2πσx
e
− 1

2σ2x
x2
j 1√

2πσy
e
− 1

2σ2y
y2j
, (20)

where σz is the rms longitudinal bunch size, σx and σy are transverse rms bunch sizes.
Thus, now, instead of density function (17), we have to work with

P (n, {rj}) =
∏
j

ρ (rj)
1√

2πnc ({ri})
exp

[
− 1

2nc ({ri})
(n− nc ({ri}))2

]
. (21)

To calculate variance of number of detected photons var(n) = n2 − n2, we need to calculate expected value of n
(n) and expected value of n2 (n2). Let us begin with n:

n =

∫
dn
∏
j

d3rjP (n, {ri})n =

∫ ∏
j

d3rjρ (rj)nc ({ri}) =

=

∞∫
0

dω

∫
detector

dθxdθy|E(n, ω)|2
(
Ne +Ne(Ne − 1)e−(σ2

z+θ
2
xσ

2
x+θ

2
yσ

2
y)ω

2
)
≈ Ne

∞∫
0

dω

∫
detector

dθxdθy|E(n, ω)|2. (22)

In the above, first, integration over n is performed, then Eqs. (19) and (20) are used, and integration over {rj}
is performed. Finally, the contribution with Ne(Ne − 1) was neglected, because σzω0 ∼ 6× 105 (σz ∼ 5 cm,λ0 ∼
500 nm). Analogously, one can calculate n2:

n2 =

∫
dn
∏
j

d3rjP (n, {ri})n2 =

∫ ∏
j

d3rjρ (rj)
(
n2c ({ri}) + nc ({ri})

)
=

∫ ∏
j

d3rjρ (rj)n
2
c ({ri}) + n. (23)

Using Eq. (19),

n2c ({ri}) =

∞∫
0

dω1dω2

∫
detector

dθ1xdθ1ydθ2xdθ2y|E(n1, ω1)|2|E(n2, ω2)|2
N2

e +Ne
∑
i6=j

eiω1n1(ri−rj)+

Ne
∑
n 6=m

e−iω2n2(rn−rm) +
∑

i 6=j,n 6=m
i,j 6=n,m

eiω1n1(ri−rj)−iω2n2(rn−rm) +
∑
i6=j

ei(ω1n1−ω2n2)(ri−rj)

 . (24)

Again, because σzω0 ∼ 6× 105, second, third, and fourth terms in Eq. (24) will give negligible contributions to
Eq. (23). However, the last term in Eq. (24) will give nonzero contribution (along with the first one, obviously, which
will give n2). Thus,

n2 = n2 + n+ ∆, (25)

where

∆ =

∞∫
0

dω1dω2

∫
detector

dθ1xdθ1ydθ2xdθ2y|E(n1, ω1)|2|E(n2, ω2)|2
∫ ∏

n

d3rnρ (rn)
∑
i6=j

ei(ω1n1−ω2n2)(ri−rj) =

= Ne(Ne−1)

∞∫
0

dω1dω2

∫
detector

dθ1xdθ1ydθ2xdθ2y|E(n1, ω1)|2|E(n2, ω2)|2e−σ
2
z(ω1−ω2)

2−σ2
x(ω1θ1x−ω2θ2x)

2−σ2
y(ω1θ1y−ω2θ2y)

2

,

(26)
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where e−σ
2
z(ω1−ω2)

2

acts like a delta function, because 1
σz
� ω0

Nu
. However, the remaining two exponents do not

behave akin to delta functions, because σ⊥ω0
1
γ ∼ 3 (see Sec. 4). Therefore,

∆ = Ne(Ne − 1)

√
π

σz

∞∫
0

dω

∫
detector

dθ1xdθ1ydθ2xdθ2y|E(n1, ω)|2|E(n2, ω)|2e−ω
2σ2
x(θ1x−θ2x)

2−ω2σ2
y(θ1y−θ2y)

2

. (27)

The above integral should be estimated numerically in general case. And then the normalized variance can be
calculated by

var(n)

n2
=

1

n
+

∆

n2
. (28)

Before we move on, it is useful for numerical calculations to express n and ∆ through dimensionless integrals
(using Eq. (8))

n = Neαγ
2KN2

uI1, ∆ = Ne(Ne − 1)
(
αγ2KN2

u

)2 √π
σzω0

I2, (29)

where

I1 =

∫
dω̃dθxdθyω̃(1− 2γ2θ2xω̃)2 sinc2

[
πNu

(
ω̃(1 + γ2θ2)− 1

)]
, (30)

I2 =

∫
dω̃dθ1xdθ1ydθ2xdθ2yω̃

2(1− 2γ2θ21xω̃)2(1− 2γ2θ22xω̃)2×

sinc2
[
πNu

(
ω̃(1 + γ2θ21)− 1

)]
sinc2

[
πNu

(
ω̃(1 + γ2θ22)− 1

)]
e−(σxω0)

2ω̃2(θ1x−θ2x)2−(σyω0)
2ω̃2(θ1y−θ2y)2 , (31)

with ω̃ = ω/ω0. Now it is clear that ∆ ∝ n2 (Ne − 1 ≈ Ne, because Ne � 1). Hence, ∆/n2 does not depend on n,
and at some point (as n grows) ∆/n2 will exceed 1/n in Eq. (28):

var(n)

n2
=

1

n
+

√
π

σzω0

I2
I21

(32)

3.3 Taking into account photodiode detection mechanism

A photodiode has certain probability distribution P (ne) to produce ne electrons after detection of one photon. Let us
denote expected value and variance of this distribution by µe and σ2

e , respectively. Now, one can repeat all the above
derivations, but for number of produced electrons in the photodiode (since this is what we measure on experiment),
instead of number of detected photons. Calculations will be very similar with the exception that the density function
(21) will take the following form

P (ne, n, {rj}) =
1√

2πnσe
exp

[
− 1

2nσ2
e

(ne − nµe)2
]
× P (n, {rj}) . (33)

The reason why (21) is modified in this way is that when n � 1 photons are detected, the probability distribution
for produced number of electrons ne is normal with expected value and variance equal to nµe and nσ2

e , respectively,
due to the central limit theorem.

One can easily deduce from Eq. (33), that

ne =

∫
dnedn

∏
j

d3rjP (ne, n, {ri})ne = µen, (34)

n2e =

∫
dnedn

∏
j

d3rjP (ne, n, {ri})n2e = µ2
en

2 + σ2
en, (35)

where n and n2 have already been calculated above. Hence, it is straightforward to obtain a normalized variance of
number of produced electrons (analogous to Eq. (32))

var(ne)

n2e
=
µe + σ2

e/µe
ne

+

√
π

σzω0

I2
I21
. (36)
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It is also important to estimate the effect of noise in the photodiode. Let us denote the number of electrons
produced by the electron beam per one turn by neb, and the number of electrons due to noise in the photodiode by
nen, where both neb and nen are independent random variables. Total number of produced electrons is ne = neb+nen.
Then, var(ne) = var (neb) + var (nen). Hence, Eq. (36) changes to

var(ne)

n2e
=
µe + σ2

e/µe
ne

+

√
π

σzω0

I2
I21

+
var (nen)

n2e
, (37)

and the noise contribution falls as negative second power of ne, and can be neglected for decent photodiodes and
ne � 1. For example, for [5], nen ∼ 1− 10 (see Appendix A), ne can be ∼ 106 and greater (see Sec. 4). Therefore,
var (nen)/n2e < 10−11, and it can definitely be neglected (see Sec. 4). Thus, we can omit the noise term at this point
and never return to it.

4 Numerical estimations

Let us assume the following values of parameters for IOTA:

• Ne = 109

• γ = 235

• K = 0.1

• Nu = 10

• λu = 5.5 cm

• λ0 = λu/(2γ
2) = 500 nm

• σz = 5 cm

• σx = σy = 100µm

• ∆θx = ∆θy = 4/γ (square detector)

• µe = 0.87, (see [5])

• σ2
e = µe = 0.87

In this case, in Eq. (36),

µe + σ2
e/µe

ne
= 2.5× 10−6,

√
π

σzω0

I2
I21

= 0.7× 10−6. (38)

Thus, the two contributions are comparable, and this can be observed on experiment. We will probably be able
to see the second term become even much bigger than the first one at bigger K, but in this simple theoretical model
we cannot use bigger K, because to use Eq. (8), we assumed that K � 1. In the paper [6], they had a wiggler with
K > 1.

5 The limit of a pinhole detector

In the limiting case, when

θD � 1/
(√

Nuγ
)
∼ 10−3, (39)

θD � λ0/ (2πσ⊥) ∼ 10−3, (40)

the integrals (30) and (31) can be calculated analytically, and the variance takes the simple form

var(ne)

n2e
=
µe + σ2

e/µe
ne

+
1

3
√
π

Tp
σz
, (41)
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where Tp = Nuλ0 is the length of the pulse of electric field produced by each electron. It can be shown by taking a
Fourier transform of Eq. (8) on z-axis (r = z):

Ej(r, t) =

∫
Ej(r, w)e−iωdω =

e

2πr

Kλuω
2
0

γπ
rect

[
ω0 (r − (t− tj))

2Nu

]
cos [ω0 (r − (t− tj))] (42)

where

rect[x] =

{
1, if |x| ≤ 1,

0, otherwise.
(43)

However, we cannot use a pinhole detector in IOTA, because then the second term in Eq. (41) is much smaller
than the first one. Indeed, for θD = 10−4 and other parameters’ values from Sec. 4

µe + σ2
e/µe

ne
= 3.0× 10−3,

1

3
√
π

Tp
σz

= 1.9× 10−5. (44)

6 Experimental setup

Figure 1: Two possible schemes of an integrator for the experiment (the right scheme will be used).

Figure 2: Voltage after first opamp (green) and votage after second opamp (blue).
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6.1 Johnson–Nyquist noise

Voltage variance due to Johnson–Nyquist noise can be found by

var (VJN ) = 4kBT0R
√

∆f = 38µV, (45)

where ∆f = 75 MHz (ten times the IOTA revolution frequency), R = 600 Ω, T0 = 300 K.
This converts to the following detected electron number variance per turn

var (neJN ) =
var (VJN )T

Re
∼ 104, (46)

which means that the Johnson–Nyquist noise contribution to normalized variance of electron number is negligible:

var (neJN )

n2e
=

104

n2e
= 10−8 � 1

ne
= 10−6. (47)

A Photodiode noise

At 410 nm (see [5]),

nen =
1.9× 10−15 W/Hz1/2 ×

√
75 MHz× 0.3 A W−1 × 132 ns

1.6× 10−19 C
≈ 4. (48)
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